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We compare hybrid Hartree-Fock density-functional theory to ab initio approaches for locating saddle point
geometries and calculating barrier heights on a Born-Oppenhiemer potential energy surface. We located
reactant, product, and saddle point stationary points for 22 reactions by the MP2 and QCISD ab initio methods
and the B3LYP, BH&HLYP, mPW1PW91, and MPW1K hybrid Hartree-Fock DFT methods. We examined
all of these methods with two basis sets, 6-31+G(d,p) and MG3. By comparison to calculations on five
systems where the saddle point has been optimized at a high level of theory, we determined that the best
saddle point geometries were obtained using the MPW1K and QCISD levels of theory. Of the methods tested,
mPW1PW91 and B3LYP are the least effective for determining saddle point geometries and have mean
unsigned error in barrier heights of 3.4-4.2 kcal/mol, depending on the basis set. In contrast, the MPW1K
level of theory predicts the most accurate saddle point geometries and has a mean unsigned error of only 1.5
kcal/mol for either basis set. For even better accuracy, the combination of MPW1K/6-31+G(d,p) geometry
calculations with QCISD(T)/MG3 or CCSD(T)/MG3 single-point energy calculations is shown to have an
excellent performance-to-cost ratio. As a side product of this work, we report optimized scale factors for
computing zero point energies by MPW1K.

1. Introduction

Hybrid Hartree-Fock density-functional theory (hereafter
called hybrid DFT) is of great interest for computational
thermochemistry and thermochemical kinetics. Its low compu-
tational cost compared to ab initio methods makes it a very
attractive alternative for many applications. Although the good
performance of hybrid DFT in structural and thermochemical
applications is well documented, its usefulness in kinetics
calculations has not been as well established. There are several
varieties of hybrid DFT based on various mixing fractions and
functionals; more recent density functionals show great promise
for improvement in the calculation of reaction barrier heights
and transition state geometries.

Hybrid DFT involves mixing various amounts of the Har-
tree-Fock (HF) nonlocal exchange operator with DFT exchange-
correlation functionals. Two very promising hybrid DFT
methods are B3LYP1 and mPW1PW91.2 These hybrid DFT
methods have proven to be a successful approach to obtaining
accurate molecular structures, vibrational frequencies, and bond
energies. The most important parameter that varies in these
methods is the fraction of HF exchange (set to 20% in B3LYP
and 25% in mPW1PW91).

Although hybrid DFT is successful in predicting properties
of stable molecules, it is a more challenging test to obtain
accurate energies at an arbitrary point on a potential energy
surface, especially points with partially formed bonds. It has
been observed that the fraction of HF exchange one needs to
accurately predict thermochemical properties differs from the
optimal fraction to predict accurate barrier heights. For example,
it has been shown empirically that the BH&HLYP3 method
gives more accurate barrier heights than B3LYP. The BH&HLYP
method most significantly differs from B3LYP in that the HF

exchange is set to 50%, but this significantly decreases the
accuracy of calculated bond energies and energies of reaction
at the same time that it improves calculated barrier heights.4

Recently, we have parametrized a method that stands in relation
to mPW1PW91 as BH&HLYP stands in relation to B3LYP,
and we obtained much better performance for both kinetics
calculations and bond energies. This is attributed to the improved
long-range behavior of the modified Perdew-Wang density
functional2 used in mPW1PW91. The resulting method as we
optimized it for kinetics is called modified Perdew-Wang
1-parameter-method for kinetics4 (MPW1K).

Reaction-path calculations require energy gradients as well
as single-point energies (i.e., energy values for a fixed geom-
etry), and the efficient calculation of vibrational frequencies and
characterization of stationary points as minima or saddle points
requires Hessians (second derivatives of the energy with respect
to nuclear coordinates). Geometry optimization (i.e., the location
of stationary points on the potential energy surface) also requires
gradients, and optimization of difficult structures such as saddle
points often requires at least one Hessian. Furthermore, for
fitting potential energy surfaces5 and for direct dynamics
calculations6 (in which the need for a fit is circumvented by
performing electronic structure calculations on the fly as needed
by the dynamics algorithm), one requires a large number of
energies and sometimes a large number of gradients and
Hessians. Thus, a major issue in selecting electronic structure
methods for dynamics applications is the performance-to-cost
ratio, which may be gauged by considering the mean error for
test data in relation to the typical computer resources required.
With either explicitly correlated methods or DFT (either pure
or hybrid), one must choose not only the method to treat
correlation but also the one-electron basis set. The cost is a steep
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function of basis set size, and sometimes performance depends
strongly on basis set as well.

The goal of the present paper is to study a variety of hybrid
DFT methods to determine how accurately available hybrid DFT
methods can predict saddle point geometries and reaction barrier
heights with two good basis sets, how their performance depends
on basis set size, and how much they cost compared to
conventional ab initio methods. The paper extends ref 4 in that
we consider saddle point geometries as well as barrier heights
and energies of reaction, we systematically consider an aug-
mented polarized valence triple-ú basis set as well as an
augmented polarized double-ú basis set, and we have enlarged
the database of test data. The cost consideration is dependent
on system size but for quantitative estimations we will use a
cost measure based primarily on a system with 11 atoms (2
carbons, 1 nitrogen, and 8 hydrogens). The conclusions clearly
also depend on the test set; we will use a set of 22 reactions for
which the true barrier height can be estimated reasonably reliably
by comparing experimental data to dynamics calculations in the
literature. These reactions mainly involve making and breaking
single bonds in neutral molecules by the transfer of hydrogen,
and so it is not as diverse a test set as one would like. However,
even if the conclusions turn out to be valid only for reactions
involving neutral atoms and rearrangements involving only
single bonds or hydrogen transfers, their scope will encompass
a large number of important applications. In a more qualitative
way, though, the conclusions certainly apply as well to an even
wider class of reactions, but it is beyond our scope or ability to
quantify that here.

There has been extensive previous work on applications of
DFT and hybrid DFT to transition states, and it is useful to
place the present work in context. The situation up to 1995 is
summarized by a symposium paper by Truong et al.,7 who
concluded from this work that “non-local DFT and hybrid DFT
methods yield results of comparable accuracy to the second-
order Møller-Plesset (MP2) method but at a much cheaper
computational cost, especially for large systems.” This sympo-
sium volume also contains an overview by Baker et al.,8 who,
“drawing on a large body of recent work” concluded that hybrid
DFT, in particular the Becke 3-parameter method based on the
Perdew-Wang 1991 correlation functional (B3PW91), also
called the adiabatic connection method (ACM), is “typically of
better quality than MP2 and only marginally more expensive
computationally than Hartree-Fock” for geometries, vibrational
frequencies, energies, and barrier heights. In 1996 Durant9

reported a systematic evaluation of one DFT method and four
hybrid DFT methods including BH&HLYP, B3LYP, and
B3PW91 for seven transition states. He found that the BH&HLYP
hybrid DFT method was best for barrier heights, and he
concluded that all functionals performed reasonably well for
geometries. Jursic examined a variety of reactions and found
that hybrid DFT methods, including B3LYP, generally under-
estimate the barrier height for abstraction of a hydrogen atom
by a hydrogen atom.10-12 A 1998Faraday Discussionincludes
a summary13 of what had been learned from 19 studies of the
accuracy of various DFT and hybrid DFT methods for transition
state geometries and barrier heights. It was concluded that “the
B3PW91 and B3LYP methods, especially the latter, have
yielded remarkably good accuracy for a number of applications
to transition state geometries and energies. At the same time
there are a number of cases where these methods are known to
be quantitatively unreliable.” Some of the early conclusions
about the accuracy of DFT and hybrid DFT methods suffer from
the fact that calculations were compared to experimental

Arrhenius activation energies rather than extracting a best
estimate of the classical barrier height by detailed modeling of
the observed rate constants in terms of a potential energy surface.
The first attempt to create a reasonably large systematic database
that did not have this deficiency was our own previous paper
(with Fast and Harris),4 where we created the first version of
the database used here. With a 6-31+G(d,p) one-electron basis
set, that paper found mean unsigned errors in barrier heights of
2.5, 4.8, 3.9, and 1.6 kcal/mol, respectively, for BH&HLYP,
B3LYP, mPWPW91, and MPW1K. This study also indicated
a systematic signed error in B3LYP and mPW1PW91 barrier
heights, which tend to be too low. Kobayashi et al.14 also found
that B3LYP systematically underestimates barrier heights.

Our previous findings4 with a 6-31+G(d,p) basis raise the
issue of basis set effects on DFT and hybrid DFT predictions.
The original, perhaps naive, expectation of many workers was
that basis set effects would be smaller on DFT calculations than
on calculations involving explicitly correlated wave functions.
Detailed studies of this effect bear out this expectation;
nevertheless, large basis sets are often required for accurate
results.15-17 A finding in our own previous study,4 employing
mPW1PW91 and MPW1K, is the importance of diffuse func-
tions in obtaining a balanced treatment of bond energies across
a range of bond types. It seems that the lack of diffuse functions
in the basis sets may contribute more significantly to the errors
obtained in some applications than is widely appreciated. One
of the goals of the present work is to systematically explore
the effect of further increases in basis set size.

In addition to making a systematic study of basis set effects
on hybrid DFT barrier heights, the present paper provides a
first systematic attempt to evaluate the accuracy of predicted
saddle point geometries.

Section 2 summarizes the test set. Section 3 summarizes all
methods and basis sets to be tested. Section 4 presents results
and discussion.

2. Databases

2.1. Energetics.The test set we will use in our comparisons
consists of the 22 reactions listed in Table 1. All energies
reported in this paper will be molar energies in units of kcal.

TABLE 1: Best Estimates of Classical Barrier Heights and
Classical Endoergicity for the Reaction Seta

reaction ∆E Vf
q Vr

q

1. Cl + H2 f HC1 + H -3.1 8.7 5.6
2. OH+ H2 f H + H2O -16.3 5.7 22.0
3. CH3 + H2 f H + CH4 -2.9 12.1 15.0
4. OH+ CH4 f CH3 + H2O -13.5 6.7 20.2
5. H + CH3OH f CH2OH + H2 -6.5 7.3 13.8
6. H + H2 f H2 + H 0.0 9.6 9.6
7. OH+ NH3 f H2O + NH2 -10.0 3.2 13.2
8. HCl + CH3 f Cl + CH4 -6.0 1.8 7.8
9. OH+ C2H6 f H2O + C2H5 -17.3 3.4 20.7
10. F+ H2 f H + HF -31.4 1.8 33.2
11. OH+ CH3 f O + CH4 -5.9 7.8 13.7
12. H+ PH3 f PH2 + H2 -22.3 3.2 25.5
13. H+ ClH′ f HC1 + H′ 0.0 18.0 18.0
14. OH+ H f H2 + O -3.0 10.1 13.1
15. H+ trans-N2H2 f H2 + N2H -35.1 5.9 41.0
16. H+ H2S f H2 + HS -13.8 3.6 17.4
17. O+ HCl f OH + Cl -0.1 9.8 9.9
18. CH4 + NH f NH2 + CH3 -14.2 8.4 22.7
19. C2H6 + NH f NH2 + C2H5 -10.4 8.0 18.4
20. C2H6 + NH2 f C2H5 + NH3 -7.4 10.4 17.8
21. NH2 + CH4f CH3 + NH3 -3.4 14.5 17.9
22.s-trans cis-C5H8 f s-trans cis-C5H8 0.0 38.4 38.4

a Units are kilocalories per mole.
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The table lists our best estimate of the zero-point exclusive
endoergicity∆E and forward (f) and reverse (r) barrier height
Vx

q, which are related by

Note that∆E is also called the energy of reaction or classical
endoergicity (it is negative for an exoergic reaction), andVx

q is
also called classical barrier height. The best estimates of the
classical endoergicities were obtained by removing the zero
point contributions from experimental heats of formation at 0
K; in particular they were calculated from zero-point exclusive
atomization energies that were obtained in this way.18 The best
estimate of the classical barrier heights for 20 of the reactions
(1-20) comes from our previously published4 best estimate of
the barrier heights for these reactions and is explained in that
previous paper. For reaction 21, NH2 + CH4, the best estimate
of the barrier was determined from theoretical19 and experi-
mental18,20 data using the method described previously.4 For
reaction 22, the [1,5] hydrogen shift isomerization ofcis-1,3-
pentadiene, the best estimate of the classical barrier height was
obtained by a scheme similar to that used for the other reactions
by basing the estimate on reaction rates for the [1,5] deuterium
shift that had been calculated21 on both AM1 and PM3 potential
surfaces. The AM1 surface has a barrier height of 39.5 kcal/
mol and underestimates the reaction rate; the PM3 surface
predicts a barrier height of 36.6 kcal/mol and overestimates the
reaction rate. The best estimate ofVq was taken from a linear
interpolation of the logarithm of the two calculated rate constants
vs the barrier height for these methods in order to obtain a rate
constant that agrees with the experimental22 value at 478.45 K.
This gives our best estimate of the barrier height to be 38.4
kcal/mol. Clearly, our barrier height database is not as accurate
or reliable as the widely used databases for heats of formation
and atomization energies of stable molecules. Nevertheless, we
believe it is accurate enough to serve as a starting point for
testing methods for calculating saddle point properties. We
encourage other researchers to suggest improvements in the
database in the future.

2.2. Saddle Point Geometries.We also made a database of
saddle point geometries. These are more difficult to determine,
so our test set is smaller (reactions 1, 6, 10, 13, and 14), and it
consists of reactions where very high-level calculations of saddle
point geometries are available. These test data for saddle point
geometries are given in Table 2, along with the literature
references23-26 for the calculations on which the estimates are
based. Note thatVsum

q denotes the sum of the making and
breaking bond distances; this is a measure of the looseness of
the structure in a direction perpendicular to the reaction
coordinate. We will call this sum the perpendicular looseness.

3. Methods

The methods used for geometry optimization include the
hybrid density functionals MPW1K,4 mPW1PW91,2 B3LYP,1

BH&HLYP,3 and two ab initio methods: Møller-Plesset
second-order perturbation theory27 (MP2), and quadratic con-
figuration interaction with single and double excitations28

(QCISD). We also performed energy calculations with the
QCISD(T)28 and CCSD(T)29 methods; these methods each
include two quasiperturbative terms involving connected triple
excitations, one analogous to a fourth-order term in the Møller-
Plesset theory and one analogous to a fifth-order term.30 The
basis sets employed are the 6-31+G(d,p) basis31 and the
modified G3Large basis,32 which is called MG3 here and in ref
33 but is also known as G3MP2Large.34 The MG3 basis is
identical to the older 6-311++G(2df,2p) basis for H and first
row atoms (C, N, O, F), and it may be thought of as an improved
6-311+G(3d2f, 2df, 2p) basis for the second row (Si, P, S, Cl).
The most significant improvement over older basis sets is
probably the inclusion of tight d functions for the second row;
for example, the exponents of the tightestd functions on P, S,
and Cl are 2.2, 2.6, and 3.0, respectively. The importance of
tight d functions for the second row was first emphasized by
Bauschlicher and Partridge15,35 and Martin and Uzan,36 and
experience in our research group is fully consistent with their
conclusions. For the Cl-H-CH3 transition state, the MG3 basis
has 121 contracted functions formed from 182 primitive
Gaussians, as compared to 62 and 118 respectively for 6-31+G-
(d,p). For the H2N-H-CH2CH3 transition state, the MG3 basis
has 182 functions contracted from 252 primitives, as compared
to 97 and 152 for 6-31+G(d,p).

The most important relativistic effect for reaction dynamics
with first and second row elements is spin-orbit coupling. In
all of the calculations presented in this paper, the spin-orbit
stabilization energy was added to all atoms and to selected open-
shell molecules, as described previously.37 The spin-orbit con-
tributions were assumed to be negligible at all transition states.

All of the calculations presented in this paper were performed
with the Gaussian98 program.38 All calculations on open-shell
systems use the spin-unrestricted formalism,3 e.g., UMP2,
UQCISD, UB3LYP, UMPW1K, etc. All saddle points were
verified to be first order with a frequency calculation, with the
exception of reactions 9, 19, 20, and 22 at the QCISD/MG3
level. For these four systems, the numerical Hessian would
require an excessive amount of computing resources, but the
structures are very similar to those confirmed at lower levels.
The structures of all MPW1K and QCISD optimized saddle
points are given in Supporting Information.

The cost function we use is designed to be an estimate of
the cost of a saddle point geometry optimization. The actual
number of energies, gradients, and Hessians required for an
optimization varies greatly depending on the system, initial
geometry, coordinate system, and optimization algorithm.
Therefore, for we defined a standard cost (C) by

whereE is the CPU time to perform an energy calculation in
minutes,G is the time to calculate a gradient, andH is the time
to calculate a Hessian. All of the timed calculations were
performed on a single 300 MHz R12000 processor on an Origin
2000 computer, and the value tabulated is the sum of theC
functions for calculations on two of the saddle point structures,
namely ClHCH3 and H2NHC2H5. For single-point calculations,
X//Y, where the geometry is optimized at levelY and a single-
point energy is calculated at levelX, the standard cost function
is defined as

TABLE 2: Best Estimates of Saddle Point Geometries for A
+ BC f AB + Ca

reaction A+ BC RAB
q RBC

q Rsum
q θABC

q ref

1. Cl + H2 f HC1 + H 0.981 1.431 2.412 180 12
6. H + H2 f H2 + H 0.930 0.930 1.860 180 13
10. F+ H2 f H + HF 1.546 0.771 2.317 119 14
13. H+ ClH′ f HC1 + H′ 1.480 1.480 2.960 180 12
14. H+ HO f H2 + O 0.894 1.215 2.109 180 15

a Units are angstroms and degrees.

Vf
q ) Vr

q + ∆E (1)

C ) 10(E + G) + H (2)

C(X//Y) ) C(Y) + E(X) (3)
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4. Results and Discussion

4.1. Saddle Point Geometries.Table 3 summarizes the mean
errors inR makingbond

q , R breakingbond
q , and perpendicular looseness

for the methods that predict a barrier for all five reactions in
the saddle point geometry test set. Table 4 summarizes the same
information for four of the five reactions, leaving out reaction
10, F+ H2, but including the methods B3LYP and mPW1PW91
in the comparisons. Reaction 10 was left out of Table 4 because
the B3LYP and mPW1PW91 methods predict that there is a
monotonically downhill reaction path; thus they predict that the
highest-energy point on the lowest-energy path is at reactants
where R makingbond

q is ∞. The errors in Tables 3 and 4 were
computed using the values in Table 2 rounded to 0.001 Å along
with the unrounded results of our calculations, but the mean
errors are rounded to 0.01 Å to allow the significant trends to
be seen more easily.

When all five reactions are considered, the lowest RMS error
in bond distances for each of the two basis sets was achieved
by MPW1K for both the 6-31+G(d,p), and MG3 basis sets. In
Table 4 where the B3LYP and mPW1PW91 methods are
considered, they have the highest RMS error in bond distances,
even though the case on which they do worst is omitted. It can
be seen that B3LYP and mPW1PW91 methods predict looser
saddle points in the perpendicular direction. That is, they tend
to overestimate the sum of the bond distances for the forming
and breaking bonds at the saddle point. MP2 has the opposite
trend for perpendicular looseness. The methods BH&HLYP,
MPW1K, and QCISD do not exhibit a systematic error in
perpendicular looseness as found in mPW1PW91, B3LYP, and
MP2; however, BH&HLYP suffers from a large RMS error in
both the bond length and perpendicular looseness.

For the reactions explored in this paper, the error tables show
that B3LYP and mPW1PW91 are not well suited for geometry
optimizations for dynamics calculations. Geometries optimized
with QCISD are well balanced with respect to perpendicular

looseness; however, the method is prohibitively expensive
except for small systems. MPW1K predicts saddle point
geometries almost as well with only an augmented, polarized
valence-double-ú-basis and a much lower cost, and MPW1K
with the larger basis set is more accurate for the full (five-
reaction) test set.

4.2. Energetics.All calculated values ofVf
q, Vr

q, and∆E are
given in the Supporting Information. Table 5 compares the mean
signed error (MSE), mean unsigned error (MUE), and root-
mean-squared error (RMSE) for the barrier heights and reaction
energies for the set of 22 reactions optimized using the 6-31+G-

TABLE 3: Mean Errors (Ångstroms) in Internuclear Distances at Saddle Point for Reactions 1, 6, 10, 13, and 14

bond distance perpendicular looseness

method basis MSEa MUEb RMSEc MSEa MUEb RMSEc cost

BH&HLYP/ 6-31+G(d,p) -0.01 0.04 0.06 -0.01 0.04 0.06 2.4(2)d

MPW1K/ 6-31+G(d,p) 0.00 0.02 0.03 -0.01 0.02 0.02 2.5(2)
MP2/ 6-31+G(d,p) -0.03 0.03 0.05 -0.05 0.05 0.07 2.6(2)
QCISD/ 6-31+G(d,p) -0.01 0.03 0.04 -0.02 0.03 0.04 1.9(4)
BH&HLYP/ MG3 -0.01 0.03 0.05 -0.02 0.04 0.05 1.6(3)
MPW1K/ MG3 -0.01 0.01 0.01 -0.01 0.02 0.02 1.6(3)
MP2/ MG3 -0.03 0.04 0.06 -0.07 0.07 0.08 3.3(3)
QCISD/ MG3 -0.01 0.02 0.03 -0.01 0.02 0.03 1.9(5)

a Mean signed error.b Mean unsigned error.c Root mean squared error.d Power of 10 in parentheses.

TABLE 4: Mean Errors (Ångstroms) in Internuclear Distances at Saddle Point for Reactions 1, 6, 13, and 14

bond distance perpendicular looseness

method basis MSEa MUEb RMSEc MSEa MUEb RMSEc cost

B3LYP/ 6-31+G(d,p) 0.03 0.07 0.12 0.07 0.07 0.11 2.4(2)d

BH&HLYP/ 6-31+G(d,p) 0.01 0.04 0.06 0.02 0.03 0.04 2.4(2)
mPW1PW91/ 6-31+G(d,p) 0.01 0.03 0.06 0.03 0.03 0.05 2.5(2)
MPW1K/ 6-31+G(d,p) 0.00 0.02 0.03 0.00 0.02 0.02 2.5(2)
MP2/ 6-31+G(d,p) -0.01 0.02 0.02 -0.03 0.03 0.03 2.6(2)
QCISD/ 6-31+G(d,p) 0.00 0.02 0.02 0.00 0.01 0.01 1.9(4)
B3LYP/ MG3 0.01 0.05 0.09 0.03 0.06 0.09 1.6(3)
BH&HLYP/ MG3 0.00 0.03 0.04 0.00 0.02 0.02 1.6(3)
mPW1PW91/ MG3 0.01 0.04 0.08 0.02 0.03 0.05 1.6(3)
MPW1K/ MG3 0.00 0.01 0.01 -0.01 0.02 0.02 1.6(3)
MP2/ MG3 -0.02 0.03 0.04 -0.05 0.05 0.06 3.3(3)
QCISD/ MG3 0.00 0.02 0.03 0.00 0.01 0.01 1.9(5)

a Mean signed error.b Mean unsigned error.c Root mean squared error.d Power of 10 in parentheses.

TABLE 5: Mean Errors (kcal/mol) for 6-31 +G(d,p) Basis

method MSEa MUE RMSE cost

66 Data
B3LYP 3.8 4.4 2.4(2)b

mPW1PW91 2.8 3.3 2.5(2)
MPW1K 1.6 2.1 2.5(2)
BH&HLYP 3.0 3.9 2.4(2)
MP2 4.6 5.4 2.6(2)
QCISD 3.8 4.4 1.9(4)

44 Barrier Heights
B3LYP -4.1 4.2 4.9
mPW1PW91 -3.6 3.6 3.8
MPW1K -1.1 1.5 1.9
BH&HLYP 0.5 2.7 3.4
MP2 5.5 5.8 6.3
QCISD 3.2 3.5 4.1

22 Energies of Reaction
B3LYP 2.8 3.4
mPW1PW91 1.3 1.6
MPW1K 1.7 2.3
BH&HLYP 3.7 4.7
MP2 2.1 2.9
QCISD 3.0 3.5

a Meansignederrors for energies of reaction are meaningless since
each reaction could be written in either direction.b Power of 10 in
parentheses.
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(d,p) basis. The first six rows of Table 5 show the MSE, MUE,
and RMSE over all 66 data (44 barrier heights, and 22 energies
of reaction). Table 6 displays the same errors for the structures
optimized using the MG3 basis. Tables 5 and 6 also show the
errors averaged separately over the barrier heights and energies
of reaction.

Table 7 shows some results for optimizing the saddle point
geometry at the MPW1K/6-31+G(d,p) level and then perform-
ing single-point energy calculations at that geometry. The table
shows that there is little advantage in doing this unless the higher
level calculation includes connected triple excitations with a
large basis set. But, if the higher-level calculation does include
these characteristics, i.e., QCISD(T)/MG3 and CCSD(T)/MG3,
then the results are quite accurate. For example, QCISD(T)/
MG3//MPW1K/6-31+G(d,p) shows a mean unsigned error in

barrier heights of only 1.3 kcal/mol at a cost only 20% larger
than MPW1K/MG3 (which has a mean unsigned error in barrier
heights of 1.5 kcal/mol) and 100 times faster than the fully
optimized QCISD/MG3 calculations (which have a mean
unsigned error in barrier heights of 2.7 kcal/mol).

The MPW1K method outperforms all other methods tested
in accuracy. It is also among the least expensive methods in
terms of computational cost. The main source of error in the
B3LYP and mPW1PW91 methods comes from a systematic
underestimate of the classical barrier height. Similarly, the ab
initio methods suffer from a systematic error, but they instead
tend to overestimate the barrier height.

5. Summary and Concluding Remarks

This paper expands upon a previous database of classical
barrier heights that can be used to test new methods for kinetics
calculations and adds a database for saddle point geometries. It
uses these databases as test cases and compares the cost and
accuracy of a number of methods for calculating saddle point
geometries, reaction barrier heights, and reaction energetics. It
confirms the success for energies of the MPW1K hybrid density
functional method with a small basis, it quantifies the improve-
ment when going to a larger basis, it demonstrates that the
method is quite accurate for saddle point geometries as well as
energies, and it demonstrates the successful use of the method
for calculating saddle point geometries in conjunction with
single-point calculations at the QCISD(T) and CCSD(T) levels.
For comparison the paper also reports full sets of optimizations
with other hybrid density functionals and two ab initio levels
with two basis sets, and a total of six single-point strategies are
tested. The answer to the question in the title of this paper is
“very well indeed, especially considering the low cost.” It is
particularly encouraging to note that the hybrid DFT results are
much less sensitive to the basis set than are the ab initio ones.

The database is dominated by hydrogen-atom-transfer reac-
tions of neutral species in the gas phase. It will be interesting
to test the successful approaches more broadly in the future.
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Appendix. Vibrational Frequencies

In a previous paper37 we developed a database of thirteen
anharmonic vibrational zero point energies (ZPEs) for testing
and parametrizing vibrational frequencies. Although vibrational
frequencies are not used in the present study, we did employ
this vibrational ZPE database to develop scale factors for
vibrational frequencies calculated both by MPW1K/6-31+G-
(d,p) and MPW1K/MG3. The results will be useful for applying

TABLE 6: Mean Errors (kcal/mol) for MG3 Basis

method MSE MUE RMSE cost

66 Data
B3LYP 3.1 3.7 1.6(3)a

mPW1PW91 2.7 3.1 1.6(3)
MPW1K 1.4 1.8 1.6(3)
BH&HLYP 2.6 3.3 1.6(3)
MP2 3.7 4.5 3.3(3)
QCISD 2.4 2.8 1.9(5)

44 Barrier Heights
B3LYP -3.5 3.6 4.1
mPW1PW91 -3.4 3.4 3.6
MPW1K -1.0 1.5 1.8
BH&HLYP 0.6 2.5 3.1
MP2 3.9 4.3 4.9
QCISD 2.6 2.7 3.1

22 Energies of Reaction
B3LYP 2.1 2.6
mPW1PW91 1.3 1.6
MPW1K 1.4 1.7
BH&HLYP 2.8 3.7
MP2 2.5 3.4
QCISD 1.6 2.0

a Power of 10 in parentheses.

TABLE 7: Mean Errors (kcal/mol) for //MPW1K/
6-31+G(d,p) Calculations

single-point energy MSE MUE RMSE cost

66 data

PMP2/6-31+G(d,p) 2.7 3.4 2.5(2)a

QCISD/6-31+G(d,p) 3.8 4.4 3.4(2)
QCISD(T)/6-31+G(d,p) 3.1 3.6 3.8(2)
PMP2/MG3 2.1 2.9 3.1(2)
QCISD/MG3 2.3 2.7 1.4(3)
QCISD(T)/MG3 1.2 1.5 1.9(3)
CCSD(T)/MG3 1.2 1.5 2.1(3)

44 barrier heights
PMP2/6-31+G(d,p) 3.0 3.3 3.9
QCISD/6-31+G(d,p) 4.1 4.2 4.8
QCISD(T)/6-31+G(d,p) 3.0 3.2 3.7
PMP2/MG3 1.3 2.1 3.0
QCISD/MG3 2.4 2.6 3.0
QCISD(T)/MG3 1.0 1.3 1.5
CCSD(T)/MG3 1.1 1.3 1.6

22 energies of reaction
PMP2/6-31+G(d,p) 1.5 2.0
QCISD/6-31+G(d,p) 3.0 3.5
QCISD(T)/6-31+G(d,p) 2.7 3.3
PMP2/MG3 2.0 2.6
QCISD/MG3 1.6 2.0
QCISD(T)/MG3 1.1 1.4
CCSD(T)/MG3 1.1 1.3

a Power of 10 in parentheses.

TABLE 8: Root-Mean-Square Errors and Scale Factors for
Calculating Zero Point Energies

RMS error in ZPEa

method unscaled scaled scale factor

MP2/cc-pVDZ 0.33b 0.17b 0.9790b

MPW1K/6-31+G(d,p) 0.70 0.21 0.9515
MPW1K/MG3 0.66 0.24 0.9552

a Units are kcal/mol.b Ref 37.
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MPW1K methods to chemical reactions, and they are presented
in Table 8, where they are compared to the previous37 results.
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